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PSP and HABs 

Figure 2: Alexandrium Fundyense, a 
common dinoflagellate that creates 
harmful blooms (NOAA) 

 



The Problem 

 

 

 

 

 

 

 

Figure 1: Blue Mussels. The Genome Compiler 



Scientific 
Question 

Can we create a shellfish toxicity forecast 
that is reliable at the site scale? 



Methods 

DMR PSP toxicity data processed by Dr. Steve 
Archer 

Use of site ID’s  

Neural Network, a deep learning tool 



What is deep 
learning? 

Figure 3: Modified: Figure 1.1 Artificial 
Intelligence, machine learning, and 
deep learning. Deep Learning With R 

 

Artificial Intelligence 

Machine Learning 

Deep Learning 



Neural 
Networks 

Figure 4: Visual of Artificial intelligence. Neural 
Networks are changing the World. What are they? 
Graham Templeton. Extreme Tech.  
 



Machine 
learning for 
forecasts 

Figure 5: Modified: Figure 1.2 Machine learning: a 
new programming paradigm. Deep Learning With R 

 

Rules 

Data 

Answers 

Data 

Answers 
Rules 

Classical Programming 

Machine Learning 
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Quiz Time! 

0 2 2 



Why so 
difficult to 
distinguish? 
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Test Classifications vs. Mean Value of Images
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     Mean image value vs. Classifications 

0 = 0-10 µg per 100g tissue 

1= 10-30 µg  

2 = 30-80 µg  

3 = 80+ (Closure) 

Figure 6:Mean value of images vs. known Labels.  
 



Current 
Predictive 
Power 

Figure 7: Predictions vs. known Labels. 
2014-2016 data to predict 2017. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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Test Classifications vs. Predicted Classifications (2017)
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Predicted Classifications vs. Known Classifications 



Current 
Predictive 
Power 
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Weeks Ahead Figure 8:Weeks ahead vs Accuracy.  
 



Past Data Only 

2015 2017 2016 

Figure 9: Forecast using past data only.  
 
 



Further 
Research 

Data layers 

Unpacking the “black box” 

Subsets of toxins 

Expand regionally 

Any ideas? 



How can 
Neural 
Networks aid 
ecology? 

Figure 11: Forget 2100, Nick Record. Visual aid to 
expose the variation in the short term within long 
term climate trends 



How can 
Neural 
Networks aid 
ecology? 

Figure 12: Forget 2100, Nick Record. Visual aid to 
expose the variation in the short term within long 
term climate trends 
 



Takeaway  

Figure 13: Could Big Data be the end of theory in science? 
Fulvio,Mazzochi  
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Neural 
Networks 

Figure 9: Object detection in Photos. Saagie 


